Regression calibration with heteroscedastic error variance.

نویسندگان

  • Donna Spiegelman
  • Roger Logan
  • Douglas Grove
چکیده

The problem of covariate measurement error with heteroscedastic measurement error variance is considered. Standard regression calibration assumes that the measurement error has a homoscedastic measurement error variance. An estimator is proposed to correct regression coefficients for covariate measurement error with heteroscedastic variance. Point and interval estimates are derived. Validation data containing the gold standard must be available. This estimator is a closed-form correction of the uncorrected primary regression coefficients, which may be of logistic or Cox proportional hazards model form, and is closely related to the version of regression calibration developed by Rosner et al. (1990). The primary regression model can include multiple covariates measured without error. The use of these estimators is illustrated in two data sets, one taken from occupational epidemiology (the ACE study) and one taken from nutritional epidemiology (the Nurses' Health Study). In both cases, although there was evidence of moderate heteroscedasticity, there was little difference in estimation or inference using this new procedure compared to standard regression calibration. It is shown theoretically that unless the relative risk is large or measurement error severe, standard regression calibration approximations will typically be adequate, even with moderate heteroscedasticity in the measurement error model variance. In a detailed simulation study, standard regression calibration performed either as well as or better than the new estimator. When the disease is rare and the errors normally distributed, or when measurement error is moderate, standard regression calibration remains the method of choice.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regression analysis with covariates that have heteroscedastic measurement error.

We consider the estimation of the regression of an outcome Y on a covariate X, where X is unobserved, but a variable W that measures X with error is observed. A calibration sample that measures pairs of values of X and W is also available; we consider calibration samples where Y is measured (internal calibration) and not measured (external calibration). One common approach for measurement error...

متن کامل

Regression calibration for Cox regression under heteroscedastic measurement error - Determining risk factors of cardiovascular diseases from error-prone nutritional replication data

For instance nutritional data are often subject to severe measurement error, and an adequate adjustment of the estimators is indispensable to avoid deceptive conclusions. This paper discusses and extends the method of regression calibration to correct for measurement error in Cox regression. Special attention is paid to the modelling of quadratic predictors, the role of heteroscedastic measurem...

متن کامل

Adaptive Variance Function Estimation in Heteroscedastic Nonparametric Regression

We consider a wavelet thresholding approach to adaptive variance function estimation in heteroscedastic nonparametric regression. A data-driven estimator is constructed by applying wavelet thresholding to the squared first-order differences of the observations. We show that the variance function estimator is nearly optimally adaptive to the smoothness of both the mean and variance functions. Th...

متن کامل

A Least Squares Method for Variance Estimation in Heteroscedastic Nonparametric Regression

Interest in variance estimation in nonparametric regression has grown greatly in the past several decades. Among the existing methods, the least squares estimator in Tong and Wang (2005) is shown to have nice statistical properties and is also easy to implement. Nevertheless, their method only applies to regression models with homoscedastic errors. In this paper, we propose two least squares es...

متن کامل

Approximately unbiased estimation of conditional variance in heteroscedastic kernel ridge regression

In this paper we extend a form of kernel ridge regression for data characterised by a heteroscedastic noise process (introduced in Foxall et al. [1]) in order to provide approximately unbiased estimates of the conditional variance of the target distribution. This is achieved by the use of the leave-one-out cross-validation estimate of the conditional mean when fitting the model of the condition...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The international journal of biostatistics

دوره 7 1  شماره 

صفحات  -

تاریخ انتشار 2011